
Learning Retrosynthetic Planning through Simulated Experience
John S. Schreck,*,† Connor W. Coley,‡ and Kyle J. M. Bishop*,†

†Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
‡Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States

*S Supporting Information

ABSTRACT: The problem of retrosynthetic planning can be
framed as a one-player game, in which the chemist (or a
computer program) works backward from a molecular target to
simpler starting materials through a series of choices regarding
which reactions to perform. This game is challenging as the
combinatorial space of possible choices is astronomical, and the
value of each choice remains uncertain until the synthesis plan is
completed and its cost evaluated. Here, we address this search
problem using deep reinforcement learning to identify policies
that make (near) optimal reaction choices during each step of
retrosynthetic planning according to a user-defined cost metric.
Using a simulated experience, we train a neural network to estimate the expected synthesis cost or value of any given molecule
based on a representation of its molecular structure. We show that learned policies based on this value network can outperform
a heuristic approach that favors symmetric disconnections when synthesizing unfamiliar molecules from available starting
materials using the fewest number of reactions. We discuss how the learned policies described here can be incorporated into
existing synthesis planning tools and how they can be adapted to changes in the synthesis cost objective or material availability.

■ INTRODUCTION
The primary goal of computer-aided synthesis planning
(CASP) is to help chemists accelerate the synthesis of desired
molecules.1−3 Generally, a CASP program takes as input the
structure of a target molecule and returns a sequence of
feasible reactions linking the target to commercially available
starting materials. The number of possible synthesis plans is
often astronomical, and it is therefore desirable to identify the
plan(s) that minimize some user-specified objective function
(e.g., synthesis cost c). The challenge of identifying these
optimal syntheses can be framed as a one-player gamethe
retrosynthesis gameto allow for useful analogies with chess
and Go, for which powerful solutions based on deep
reinforcement learning now exist.4,5 During play, the chemist
starts from the target molecule and identifies a set of candidate
reactions by which to make the target in one step (Figure 1).
At this point, the chemist must decide which reaction to
choose. As in other games such as chess, the benefits of a
particular decision may not be immediately obvious. Only
when the game is won or lost can one fairly assess the value of
decisions that contributed to the outcome. Once a reaction is
selected, its reactant or reactants become the new target(s) of
successive retrosynthetic analyses. This branching recursive
process of identifying candidate reactions and deciding which
to use continues until the growing synthesis tree reaches the
available substrates (a “win”), or it exceeds a specified number
of synthetic steps (a “loss”).
Winning outcomes are further distinguished by the cost c of

the synthesis pathway identifiedthe lower the better. This
synthesis cost is often ambiguous and difficult to evaluate as it

involves a variety of uncertain or unknown quantities. For
example, the synthesis cost might include the price of the
starting materials, the number of synthetic steps, the yield of
each step, the ease of product separation and purification, the
amount of chemical waste generated, the safety or environ-
mental hazards associated with the reactions and reagents, etc.
It is arguably more challenging to accurately evaluate the cost
of a proposed synthesis than it is to generate candidate
syntheses. It is therefore common to adopt simple objective
functions that make use of the information available (e.g., the
number of reactions but not their respective yields).6 We refer
to the output of any such function as the cost of the synthesis;
optimal synthesis plans correspond to those with minimal cost.
Expert chemists excel at the retrosynthesis game for two

reasons: (1) they can identify a large number of feasible
reaction candidates at each step, and (2) they can select those
candidates most likely to lead to winning syntheses. These
abilities derive from the chemists’ prior knowledge and their
past experience in making molecules. In contrast to games with
a fixed rule set like chess, the identification of feasible reaction
candidates (i.e., the possible “moves”) is nontrivial: there may
be thousands of possible candidates at each step using known
chemistries. To address this challenge, computational
approaches have been developed to suggest candidate
reactions using libraries of reaction templates prepared by
expert chemists7 or derived from literature data.8−10 Armed
with these “rules” of synthetic chemistry, a computer can, in

Received: January 18, 2019
Published: May 31, 2019

Research Article

http://pubs.acs.org/journal/acsciiCite This: ACS Cent. Sci. 2019, 5, 970−981

© 2019 American Chemical Society 970 DOI: 10.1021/acscentsci.9b00055
ACS Cent. Sci. 2019, 5, 970−981

This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-commercial purposes.

http://pubs.acs.org/journal/acscii
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acscentsci.9b00055
http://dx.doi.org/10.1021/acscentsci.9b00055
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_termsofuse.html

principle, search the entire space of possible synthesis pathways
and identify the optimal one.
In practice, however, an exhaustive search of possible

synthesis trees is not computationally feasible or desirable
because of the exponential growth in the number of reactions
with distance from the target.6,11 Instead, search algorithms
generate a subset of possible synthesis trees, which may or may
not contain the optimal pathway(s). For longer syntheses, the
subset of pathways identified is an increasingly small fraction of
the total available. Thus, it is essential to bias retrosynthetic
search algorithms toward those regions of synthesis space most
likely to contain the optimal pathway. In the game of
retrosynthesis, the player requires a strong guiding model, or
policy, for selecting the reaction at each step that leads to the
optimal synthetic pathway(s).
Prior reports on retrosynthetic planning have explored a

variety of policies for guiding the generation of candidate
syntheses.7,12−14 These programs select among possible
reactions using heuristic scoring functions,7,15 crowd-sourced
accessibility scores,13,16 analogy to precedent reactions,17 or
parametric models (e.g., neural networks) trained on literature
precedents.18,19 In particular, the Syntaurus software7 allows
for user-specified scoring functions that can describe common
strategies used by expert chemists20 (e.g., using symmetric
disconnections to favor convergent syntheses). By contrast,
Segler and Waller used literature reaction data to train a neural
network that determines which reaction templates are most
likely to be effective on a given molecule.18 The ability to rank
order candidate reactions (by any means) allows for guiding
network search algorithms (e.g., Monte Carlo tree search19) to
generate large numbers of possible synthesis plans. The costs
of these candidates can then be evaluated to identify the “best”
syntheses, which are provided to the chemist (or perhaps a
robotic synthesizer).

Here, we describe a different approach to retrosynthetic
planning based on reinforcement learning,21 in which the
computer learns to select those candidate reactions that lead
ultimately to synthesis plans minimizing a user-specified cost
function. Our approach is inspired by the recent success of
deep reinforcement learning in mastering combinatorial games
such as Go using experience generated by repeated self-play.4,5

In this way, DeepMind’s AlphaGo Zero learned to estimate the
value of any possible move from any state in the game, thereby
capturing the title of world champion.4,22 Similarly, by
repeated plays of the retrosynthesis game, the computer can
learn which candidate reactions are most likely to lead from a
given molecule to available starting materials in an optimal
fashion. Starting from a random policy, the computer explores
the synthetic space to generate estimates of the synthesis cost
for any molecule. These estimates form the basis for improved
policies that guide the discovery of synthesis plans with lower
cost. This iterative process of policy improvement converges in
time to optimal policies that identify the “best” pathway in a
single play of the retrosynthesis game. Importantly, we show
that (near) optimal policies trained on the synthesis of
∼100 000 diverse molecules generalize well to the synthesis of
unfamiliar molecules.
This approach requires no prior knowledge of synthetic

strategy beyond the “rules” governing single-step reactions
encoded in a library of reaction templates. The library we use
below was extracted algorithmically from the Reaxys database
and does not always generate chemically feasible recommen-
dations. However, our approach can be extended to other
template libraries, including those curated by human experts7

and/or data-driven filters23,24 to improve the likelihood that
proposed reactions are effective and selective. Overall, the goal
of this work is to learn the strategy of applying these rules for
retrosynthesis, rather than to improve quality of the rules

Figure 1. The objective of the retrosynthesis game is to synthesize the target product m0 from available substrates by way of a synthesis tree that
minimizes the cost function. Molecules and reactions are illustrated by circles and squares, respectively. Starting from the target, a reaction

∈r m()0 0 (yellow) is selected according to a policy π(r0|m0) that links m0 with precursors m1, m2, m3. The gray squares leading to m0 illustrate the
other potential reactions in m()0 . The game continues one move at a time reducing intermediate molecules (blue) until there are only substrates
remaining, or until a maximum depth of 10 is reached. Dead-end molecules (green), for which no reactions are possible, are assigned a cost penalty
of 100, while molecules at maximum depth (purple) are assigned a cost penalty of 10. Commercially available substrates (red) are assigned zero
cost. The synthesis cost of the product may be computed according to eq 1 only on completion of the game. Here, the sampled pathway leading to
the target (red arrows) has a cost of 5.

ACS Central Science Research Article

DOI: 10.1021/acscentsci.9b00055
ACS Cent. Sci. 2019, 5, 970−981

971

http://dx.doi.org/10.1021/acscentsci.9b00055

themselves. The learned policies we identify can be
incorporated into existing synthesis planning tools and adapted
to different cost functions that reflect the changing demands of
organic synthesis.

■ RESULTS AND DISCUSSION

The Retrosynthesis Game. We formulate the problem of
retrosynthetic analysis as a game played by a synthetic chemist
or a computer program. At the start of the game, the player is
given a target molecule m to synthesize starting from a set of
buyable molecules denoted . For any such molecule, there
exist a set of reactions, denoted m(), where each reaction
includes the molecule m as a product. From this set, the player
chooses a particular reaction ∈r m() according to a policy
π(r|m), which defines the probability of selecting that reaction
for use in the synthesis. The cost crxn(r) of performing the
chosen reactionhowever defined by the useris added to a
running total, which ultimately determines the overall synthesis
cost. Having completed one step of the retrosynthesis game,
the player considers the reactant(s) of the chosen reaction in
turn. If a reactant m′ is included among the buyable substrates,

′ ∈m , then the cost of that molecule csub(m′) is added to the
running total. Otherwise, the reactant m′ must be synthesized
following the same procedure outlined above. This recursive
processes results in a synthesis tree whose root is the target
molecule, and whose leaves are buyable substrates. The total
cost of the resulting synthesis is

∑ ∑= +c c r c m() ()
r m

tot rxn sub
(1)

where the respective sums are evaluated over all reactions r and
all leaf molecules m included in the final synthesis tree. This
simple cost function neglects effects due to interactions
between successive reactions (e.g., costs incurred in switching
solvents); however, it has the useful property that the expected
cost vπ(m) of making any molecule m in one step via reaction r
is directly related to the expected cost of the associated
reactants

∑ ∑π= | + ′π π
∈ ′∈

v m r m c r v m() () () ()
r m m r()

rxn
()

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ (2)

This recursive function terminates at buyable molecules of
known cost, for which vπ(m) = csub(m) independent of the
policy.
The function vπ(m) denotes the expected cost or “value” of

any molecule m under a specified policy π. By repeating the
game many times starting from many target molecules, it is
possible to estimate the value for each target and its precursors.
Such estimates generated from simulated experience can be
used to train a parametric representation of the value function,
which predicts the expected cost of any molecule. Importantly,
knowledge of the value function under a suboptimal policy π
enables the creation of new and better policies π′ that reduce
the expected cost of synthesizing a molecule (according to the
policy improvement theorem21). Using methods of reinforce-
ment learning, such iterative improvement schemes, leads to
the identification of optimal policies π∗, which identify
synthesis trees of minimal cost. The value of a molecule
under such a policy is equal to the expected cost of selecting
the “best” reaction at each step such that

∑* = + * ′
′∈

v m c r v m() min () ()
r m r

rxn
()

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ (3)

From a practical perspective, the optimal value function takes
as input a molecule (e.g., a representation of its molecular
structure) and outputs a numeric value corresponding to the
minimal cost with which it can be synthesized.
Here, we considered a set of 100 000 target molecules

selected from the Reaxys database on the basis of their
structural diversity (see the Methods section). The set of
buyable substrates contained ∼300 000 molecules selected
from the Sigma-Aldrich,25 eMolecules,26 and LabNetwork27

catalogs that have list prices less than $100/g. At each step, the
possible reactions m() were identified using a set of 60 000
reaction templates derived from more than 12 million single-
step reaction examples reported in the Reaxys database (see
the Methods section). Because the application of reaction
templates is computationally expensive, we used a template
prioritizer to identify those templates most relevant to a given
molecule.18 On average, this procedure resulted in up to 50
possible reactions for each molecule encountered during
synthesis planning. We assume the space of molecules and
reactions implicit in these transformations is representative of
real organic chemistry while recognizing the inevitable
limitations of templates culled from incomplete and sometimes
inaccurate reaction databases. For simplicity, the cost of each
reaction step was set to one, crxn(r) = 1, and the substrate costs
to zero, csub(m) = 0. With these assignments, the cost of
making a molecule is equivalent to the number of reactions in
the final synthesis tree.
To prohibit the formation of unreasonably deep synthesis

trees, we limited our retrosynthetic searches to a maximum
depth of dmax = 10. As detailed in the Methods section, the
addition of this termination criterion to the recursive definition
of the value function (eq 2) requires some minor modifications
to the retrosynthesis game. In particular, the expected cost of
synthesizing a molecule m depends also on the residual depth,
vπ = vπ(m, δ), where δ = dmax − d is the difference between the
maximum depth and the current depth d within the tree. If a
molecule m not included among the buyable substrates is
encountered at a residual depth of zero, it is assigned a large
cost vπ(m, 0) = P1, thereby penalizing the failed search.
Additionally, in the event that no reactions are identified for a
given molecule m (= ⌀m()), we assign an even larger
penalty P2, which encourages the player to avoid such dead-
end molecules if possible. Below, we use the specific numeric
penalties of P1 = 10 and P2 = 100 for all games.

Heuristic Policies. En route to the development of optimal
policies for retrosynthesis, we first consider the performance of
some heuristic policies that provide context for the results
below. Arguably the simplest policy is one of complete
ignorance, in which the player selects a reaction at random at
each stage of the synthesisthat is, π(r|m) = constant. We use
this “straw man” policy to describe the general process of
policy evaluation and provide a baseline from which to
measure subsequent improvements, although it is unlikely to
be used in practice.
During the evaluation process, the computer plays the

retrosynthesis game to the end making random moves at each
step of the way. After each game, the cost of each molecule in
the resulting synthesis tree is computed. This process is
repeated for each of the 100 000 target molecules considered.

ACS Central Science Research Article

DOI: 10.1021/acscentsci.9b00055
ACS Cent. Sci. 2019, 5, 970−981

972

http://dx.doi.org/10.1021/acscentsci.9b00055

These data pointseach containing a molecule m at residual
depth δ with cost care used to update the parametric
approximation of the value function vπ(m, δ). As detailed in the
Methods section, the value function is approximated by a
neural network that takes as input an extended-connectivity
fingerprint (ECFP) of the molecule m and the residual depth δ
and outputs a real valued estimate of the expected cost under
the policy π.28 This process is repeated in an iterative manner
as the value estimates of the target molecules, vπ(m, dmax),
approach their asymptotic values.
Figure 2a shows the total synthesis cost ctot for a single target

molecule under the random policy (markers). Each play of the

retrosynthesis game has one of three possible outcomes: a
“winning” synthesis plan terminating in buyable substrates
(blue circles), a “losing” plan that exceeds the maximum depth
(green triangles), and a “losing” plan that contains dead-end
molecules that cannot be bought or made (black pentagons).

After many synthesis attempts, the running average of the
fluctuating synthesis cost converges to the expected cost vπ(m,
dmax) as approximated by the neural network (red line).
Repeating this analysis for the 100 000 target molecules, the
random policy results in an average cost of ∼110 per molecule
with only a 25% chance of identifying a winning synthesis in
each attempt. Clearly, there is room for improvement.
Beyond the random policy, even simple heuristics can be

used to improve performance significantly. In one such policy,
inspired by Syntaurus,7 the player selects the reaction r that
maximizes the quantity

∑= − ′γ γ

′∈

f r n m n m() () ()
m r

s
()

s
(4)

where ns(m) is the length of the canonical smiles string
representing molecule m, γ is a user-specified exponent, and
the sum is taken over the reactants (r) associated with a
reaction r. When γ > 1, the reactions that maximize this
function can be interpreted as those that decompose the
product into multiple parts of roughly equal size. Note that, in
contrast to the random policy, this greedy heuristic is
deterministic: each play of the game results in the same
outcome. Figure 2a shows the performance of this “symmetric
disconnection” policy with γ = 1.5 for a single target molecule
(dashed line). Interestingly, while the pathway identified by
the greedy policy is much better on average than those of the
random policy (ctot = 4 versus ⟨ctot⟩ = 35.1), repeated
application of the latter reveals the existence of an even better
pathway containing only three reactions. An optimal policy
would allow for the identification of that best synthesis plan
during a single play of the retrosynthesis game.
The performance of a policy is characterized by the

distribution of expected costs over the set of target molecules.
Figure 2b shows the cost distribution for a series of policies
that interpolate between the greedy “symmetric disconnection”
policy and the random policy (see also Figure S1). The
intermediate ε-greedy policies behave greedily with probability
1 − ε, selecting the reaction that maximizes f(r), but behave
randomly with probability ε, selecting any one of the possible
reactions ∈r m() with equal probability. On average, the
addition of such noise is detrimental to policy performance.
Noisy policies are less likely to identify a successful synthesis
for a given target (Figure S2a) and result in longer syntheses
when they do succeed (Figure S2b). Consequently, the average
cost ⟨ctot⟩ increases monotonically with increasing noise as
quantified by the parameter ε (Figure 2c).
The superior performance (lower synthesis costs) of the

greedy policy is correlated with the average branching factor
⟨b⟩, which represents the average number of reactants for each
reaction in the synthesis tree. Branching is largest for the
greedy policy (ε = 0) and decreases monotonically with
increasing ε (Figure 2c). On average, synthesis plans with
greater branching (i.e., convergent syntheses) require fewer
synthetic steps to connect the target molecules to the set of
buyable substrates. This observation supports the chemical
intuition underlying the symmetric disconnection policy: break
apart each “complex” molecule into “simpler” precursors.
However, this greedy heuristic can sometimes be short-sighted.
An optimal retrosynthetic “move” may increase molecular
complexity in the short run to reach simpler precursors more
quickly in the longer run (e.g., in protecting group chemistry).
An optimal policy would enable the player to identify local

Figure 2. Heuristic policies. (a) Synthesis cost ctot for a single
molecule m (N-dibutyl-4-acetylbenzeneacetamide) for successive
iterations of the retrosynthesis game under the random policy. Blue
circles denote “winning” synthesis plans that trace back to buyable
molecules. Green triangles and black pentagons denote “losing” plans
that exceed the maximum depth or include unmakeable molecules,
respectively. The solid line shows the neural network prediction of the
value function vπ(m, dmax) as it converges to the average synthesis
cost. The dashed line shows the expected cost under the deterministic
“symmetric disconnection” policy with γ = 1.5. (b) Distribution of
expected costs vπ(m, dmax) over the set of 100 000 target molecules for
different noise levels ε. The red squares and black circles show the
performance of the symmetric disconnection policy (ε = 0) and the
random policy (ε = 1), respectively. See Figure S1 for the full
distribution including higher cost (“losing”) syntheses. (c) The
average synthesis cost of the target molecules increases with
increasing noise level ε, while the average branching factor decreases.
Averages were estimated from 50 plays for each target molecule.

ACS Central Science Research Article

DOI: 10.1021/acscentsci.9b00055
ACS Cent. Sci. 2019, 5, 970−981

973

http://pubs.acs.org/doi/suppl/10.1021/acscentsci.9b00055/suppl_file/oc9b00055_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.9b00055/suppl_file/oc9b00055_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.9b00055/suppl_file/oc9b00055_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.9b00055/suppl_file/oc9b00055_si_001.pdf
http://dx.doi.org/10.1021/acscentsci.9b00055

moves (i.e., reactions) that lead to synthesis pathways with
minimum total cost.
Policy Improvement through Simulated Experience.

Knowledge of the value function, vπ, under a given policy π
enables the identification of better policies that reduce the
expected synthesis cost. To see this, consider a new policy π′
that selects at each step the reaction that minimizes the
expected cost under the old policy π

∑
π′ | =

= + ′π
∈ ′∈r m

r c r v m
()

1 if arg min () ()

0 otherwise

r m m r()
rxn

()

l

m
oooooo

n
oooooo

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ

(5)

Restated, the new π′ is a deterministic policy that always
selects the reaction r to minimize the cost of m. It calculates
the cost of synthesizing m through reaction r by adding the
reaction cost, crxn(r), and the costs of the associated precursors,
∑ ′π′ v m()m ; the cost of the precursor molecules is estimated
using the value function vπ defined by the old policy π. The
new policy function does not need to be calculated in advance
but is used on-the-fly to select the best reaction from the list of
options generated by the template library.
By the policy improvement theorem,21 this greedy policy π′

is guaranteed to be as good as or better than the old policy π
that is, ≤π π′v v , where equality holds only for the optimal
policy. This result provides a basis for systematically improving
any policy in an iterative procedure called policy iteration,21 in
which the value function vπ leads to an improved policy π′ that
leads to a new value function π′v and so on.
One of the challenges in using the greedy policy eq 5 is that

it generates only a single pathway and its associated cost for
each of the target molecules. The limited exposure of these
greedy searches can result in poor estimates of the new value
function π′v , in particular for molecules that are not included in
the identified pathways. A better estimate of π′v can be achieved
by exploring more of the molecule space in the neighborhood
of these greedy pathways. Here, we encourage exploration by
using an ε-greedy policy, which introduces random choices
with probability ε but otherwise follows the greedy policy eq 5.
Iteration of this ε-soft policy is guaranteed to converge to an
optimal policy that minimizes the expected synthesis cost for a
given noise level ε > 0.21 Moreover, by gradually lowering the
noise level, it is possible to approach the optimal greedy policy
in the limit as ε → 0.
Training Protocol. Starting from the random policy, we

simulated games to learn an improved policy over the course of
1000 iterations, each composed of ∼100 000 retrosynthesis
games initiated from the target molecules. During the first
iteration, each target molecule was considered in turn using the
ε-greedy policy eq 5 with ε = 0.2. Candidate reactions and
their associated reactants were identified by application of
reaction templates as detailed in the Methods section. Absent
an initial model of the value function, the expected costs of
molecules encountered during play were selected at random
from a uniform distribution on the interval [1, 100]. Following
the completion of each game, the costs of molecules in the
selected pathway were computed and stored for later use. In
subsequent iterations, the values of molecules encountered
previously (at a particular depth) were estimated by their
average cost. After the first 50 iterations, the value estimates

accumulated during play were used to train a neural network,
which allowed for estimating the values of new molecules not
encountered during the previous games (see the Methods
section for details on the network architecture and training).
Policy improvement continued in an iterative fashion guided
both by the average costs (for molecules previously
encountered) and by the neural network (for new molecules),
which was updated every 50−100 iterations.
During policy iteration, the noise parameter was reduced

from ε = 0.2 to 0 in increments of 0.05 every 200 iterations in
an effort to anneal the system toward an optimal policy.
Following each change in ε, the saved costs were discarded
such that subsequent value estimates were generated at the
current noise level ε. The result of this training procedure was
a neural network approximation of the (near) optimal value
function v∗(m, δ), which estimates the minimum cost of
synthesizing any molecule m starting from residual depth δ. In
practice, we found that a slightly better value function could be
obtained using the cumulative reaction network generated
during policy iteration. Following Kowalik et al.,6 we used
dynamic programming to compute the minimum synthesis
cost for each molecule in the reaction network. These
minimum costs were then used to train the final neural
network approximation of the value function v∗.

Training Results. Figure 3a shows how the average
synthesis cost ⟨ctot⟩ decreased with each iteration over the

course of the training process. Initially, the average cost was
similar to that of the random policy (⟨ctot⟩ ≈ 70) but improved
steadily as the computer learned to identify “winning”
reactions that lead quickly to buyable substrates. After 800
iterations, the cost dropped below that of the symmetric
disconnection policy (⟨ctot⟩ = 19.3) but showed little further
improvement in the absence of exploration (i.e., with ε = 0).
The final cost estimate (⟨ctot⟩ = 11.4, cyan square) was
generated by identifying the minimum cost pathways present
in the cumulative reaction network generated during the

Figure 3. Training results. (a, b) ⟨ctot⟩ and ⟨btot⟩ computed using π∗
are plotted versus policy iterations, respectively (solid blue squares).
Solid horizontal lines show these quantities for the heuristic policy πsd
(red triangles) and the random policy (black circles). The larger cyan
square shows ⟨ctot⟩ after each tree had been searched for the best
(lowest) target cost. Dashed vertical lines show points when ε was
lowered.

ACS Central Science Research Article

DOI: 10.1021/acscentsci.9b00055
ACS Cent. Sci. 2019, 5, 970−981

974

http://dx.doi.org/10.1021/acscentsci.9b00055

training process. The final drop in cost for ε = 0 suggests that
further policy improvements are possible using improved
annealing schedules. We emphasize that the final near-optimal
policy was trained from a state of complete ignorance, as
directed by the user-specified objective function to minimize
the synthesis cost.
During the training process, the decrease in synthesis cost

was guided both by motivation, as prescribed by the cost
function, and by opportunity, as dictated by the availability of
alternate pathways. Early improvements in the average cost
were achieved by avoiding dead-end molecules, which
contributed the largest cost penalty, P2 = 100. Of the target
molecules, 11% reduced their synthesis cost from ctot > P2 to P2
> ctot > P1 by avoiding such problematic molecules. By
contrast, only 2% of targets improved their cost from P2 > ctot >
P1 to P1 > ctot. In other words, if a synthesis tree was not found
initially at a maximum depth of dmax = 10, it was unlikely to be
discovered during the course of training. Perhaps more
interesting are those molecules (ca. 10%) for which syntheses
were more easily found but subsequently improved (i.e.,
shortened) during the course of the training process. See Table
1 for a more detailed breakdown of these different groups.

Consistent with our observations above, lower-cost path-
ways were again correlated with the degree of branching b
along the synthesis trees (Figure 3b). Interestingly, the average
branching factor for synthesis plans identified by the learned
policy was significantly larger than that of the symmetric
disconnection policy (⟨b⟩ = 1.65 versus 1.54). While the latter
favors branching, it does so locally based on limited
informationnamely, the heuristic score of eq 5. By contrast,
the learned policy uses information provided in the molecular
fingerprint to select reactions that increase branching across
the entire synthesis tree (not just the single step).
Furthermore, while the heuristic policy favors branching a
priori, the learned policy does so only in the service of reducing
the total cost. Changes in the objective function (e.g., in the
cost and availability of the buyable substrates) will lead to
different learned policies.
Model Validation. Figure 4 compares the performance of

the learned policy evaluated on the entire set of ∼100 000
target molecules used for training and on a different set of
∼25 000 target molecules set aside for testing. For the training
molecules, the value estimates v∗(m) predicted by the neural
network are highly correlated with the actual costs obtained by
the final learned policy π∗ (Figure 4a). We used the same near-
optimal policy to determine the synthesis cost of the testing
molecules, ctot(π∗). As illustrated in Figure 4b, these costs were
correlated to the predictions of the value network v∗(m) albeit

more weakly than those of the training data (Pearson
coefficient of 0.5 for testing versus 0.99 for training). This
correlation was stronger for the data in Figure 4b, which
focuses on those molecules that could actually be synthesized
(Pearson coefficient of 0.7 for the 73% testing molecules with
“winning” syntheses).
Figure 4c,d compares the synthesis costs of the symmetric

disconnection policy πsd against that of the learned policy π∗
for both the training and testing molecules. The figure shows
that the results are highly correlated (Pearson coefficient 0.84
and 0.86 for training and testing, respectively), indicating that
the two policies make similar predictions. However, closer
inspection reveals that the learned policy is systematically
better than the heuristic as made evident by the portion of the
histogram below the diagonal (red line). For these molecules
(42% and 31% of the training and testing sets, respectively),
the learned policy identifies synthesis trees containing fewer
reactions than those of the heuristic policy during single
deterministic plays of the retrosynthesis game. By contrast, it is
rare in both the training and testing molecules (about 4% and
11%, respectively) that the symmetric disconnection policy
performs better than the learned policy. Additionally, the
learned policy is more likely to succeed in identifying a viable
synthesis plan leading to buyable substrates (Figure 4c). Of the
∼25 000 testing molecules, “winning” synthesis plans were
identified for 73% using the learn policy as compared to 64%
using the heuristic. These results suggest that the lessons
gleaned from the training molecules can be used to improve
the synthesis of new and unfamiliar molecules.
Figures 5 and 6 show proposed synthesis pathways for two

molecules in the test set as identified by the heuristic policy
and by the learned policy at different stages of training. We
emphasize that what is being learned is a strategy for applying
retrosynthetic templates given a fixed template library, not
their chemical feasibility. Figure 5 shows a target for which
there is a precedent three-component Povarov reaction;29

however, this transformation is not present in the template
library and is thus unavailable to the heuristic and trained
policies. Instead, the heuristic policy greedily proposes a
substantial disconnection followed by a retro-oxidation and the
final retrosubstitution. By contrast, the learned policy proposes
a retroketone reduction, which does not lead to a large
structural simplification of the molecule but rather sets up an
elegant three-component Mannich reaction. It is worth noting
that the learned policy based on deep neural networks cannot
explain why it selects the retroketone reduction, only that
“similar” choices led to favorable outcomes in past experience.
Early during training, without the benefit of such experience,
the learned policy shows virtually no synthetic strategy (Figure
5d). In Figure 6, the first disconnection is shared by the
heuristic and the learned policies; however, the latter (Figure
6b) identifies a path to install the phenyl group without
requiring additional redox chemistry (Figure 6a). In these
representative examples, the learned policy identifies pathways
with fewer reaction steps than the heuristic as directed by the
chosen cost function.

■ CONCLUSIONS
We have shown that reinforcement learning can be used to
identify effective policies for the computational design of
retrosynthetic pathways given a fixed library of retrosynthetic
templates defining the “rules”. In this approach, one specifies
the global objective function to be minimized (here, the

Table 1. Training and Testing Results for the Symmetric
Disconnection Policy πsd and the Learned Policy π∗

a

train (100 000) test (25 000)

πsd π∗ πsd π∗

⟨ctot⟩ 19.3 13.1 19.2 11.5
⟨b⟩ 1.54 1.65 1.54 1.58
ctot < P1 64% 83% 65% 73%
P1 ≤ ctot < P2 25% 11% 24% 22%
ctot ≥ P2 11% 6% 11% 5%

aPercentages were computed based the sizes of the training set
(∼100 000) and the testing set (∼25 000).

ACS Central Science Research Article

DOI: 10.1021/acscentsci.9b00055
ACS Cent. Sci. 2019, 5, 970−981

975

http://dx.doi.org/10.1021/acscentsci.9b00055

synthesis cost) without the need for ad hoc models or
heuristics to guide local decisions during generation of the
synthesis plan. Starting from a random policy, repeated plays of
the retrosynthesis game are used to systematically improve
performance in an iterative process that converges in time to
an optimal policy. The learned value function provides a
convenient estimate for the synthesis cost of any molecule,
while the associated policy allows for rapid identification of the
synthesis path.
In practice, synthesis design and pathway optimization are a

multiobjective problem that benefits from a detailed
consideration of process costs. Ease of purification, estimated
yield and purity, chemical availability, presence of genotoxic
intermediates or impurities, and overall process mass intensity

may all factor into the decision. Importantly, the cost function
of eq 2 is readily adapted to accommodate any combination of
such costs at the single chemical or single reaction level. Policy
iteration using a different cost function will result in a different
policy that reflects the newly specified objectives.
The chemical feasibility of synthetic pathways identified by

the learned policy is largely determined by the quality of the
reaction templates. The present templates are derived
algorithmically from reaction precedents reported in the
literature; however, an identical approach based on reinforce-
ment learning could be applied using template libraries curated
by human experts.7,30 Alternatively, it may be possible to forgo
the use of reaction templates altogether in favor of machine
learning approaches that suggest reaction precursors by other

Figure 4.Model Validation. A 2D histogram illustrates the relationship between the synthesis cost ctot determined by the learned policy π∗ and that
predicted by the value network v∗ for (a) the ∼100 000 training molecules and (b) the ∼25 000 testing molecules. A 2D histogram compares the
synthesis cost ctot determined by the symmetric disconnection policy πsd to that of learned policy π∗ for (c) training molecules and (d) testing
molecules. The percentage of molecules for which π∗ (πsd) found the cheaper pathway is listed below (above) the red line. In parts a−d, the gray
scale intensity is linearly proportional to the number of molecules within a given bin; the red line shows the identity relation. Distributions of
synthesis costs ctot determined under policies πsd and π∗ are shown for (e) training molecules and (f) testing molecules.

ACS Central Science Research Article

DOI: 10.1021/acscentsci.9b00055
ACS Cent. Sci. 2019, 5, 970−981

976

http://dx.doi.org/10.1021/acscentsci.9b00055

means.31 Ideally, such predictions should be accompanied by
recommendations regarding the desired conditions for

performing each reaction in high yield.32−35 There are,
however, some challenges in using data-driven models for

Figure 5. Pathways for target 417, COC1CCC2NC(CC(C3CCCCC3O)C2C1)C1CCC(Cl)CC1, obtained (a) using the
heuristic policy and using learned policies at different stages of training: (b) the final (near) optimal policy; (c) after 400−800 epochs of training;
and (d) after fewer than 400 epochs.

ACS Central Science Research Article

DOI: 10.1021/acscentsci.9b00055
ACS Cent. Sci. 2019, 5, 970−981

977

http://dx.doi.org/10.1021/acscentsci.9b00055

predicting chemical reactions that limit their predictive
accuracy. These include incomplete reporting of reaction
stoichiometries, ambiguity in the reported reaction outcomes,

and data sparsity when considering rare or under-reported

reaction types.

Figure 6. Pathways for target 2757, CCC(C)(C)C(NNC1CCC(Cl)=CC1)C1CCCCC1, obtained (a) using the heuristic policy
and using learned policies at different stages of training: (b) the final (near) optimal policy; (c) after 400−800 epochs of training; and (d) after
fewer than 400 epochs.

ACS Central Science Research Article

DOI: 10.1021/acscentsci.9b00055
ACS Cent. Sci. 2019, 5, 970−981

978

http://dx.doi.org/10.1021/acscentsci.9b00055

In the present approach, the deterministic policy learned
during training is applied only once to suggest one (near)
optimal synthesis pathway. Additional pathways are readily
generated, for example, using Monte Carlo Tree Search
(MCTS) to bias subsequent searches away from previously
identified pathways.18 A similar approach is used by Syntaurus,
which relies on heuristic scoring functions to guide the
generation of many possible synthesis plans, from which the
“best” are selected. The main advantage of a strong learned
policy is to direct such exploration more effectively toward
these best syntheses, thereby reducing the computational cost
of exploration.
We note, however, that the computational costs of training

the learned policy are significant (ca. several million CPU
hours for the training in Figure 3). While the application of
reaction templates remains the primary bottleneck (ca. 50%),
the additional costs of computing ECFP fingerprints and
evaluating the neural network were a close second (ca. 45%).
These costs can be greatly reduced by using simple heuristics
to generate synthetic pathways, from which stronger policies
can be learned. We found that eq 4 performed remarkably well
and was much faster to evaluate than the neural network. Such
fast heuristics could be used as starting points for iterative
policy improvement or as roll-out policies within MCTS-based
learning algorithms.21 This approach is conceptually similar to
the first iteration of AlphaGo introduced by DeepMind.36

Looking forward, we anticipate that the retrosynthesis game
will soon follow the way of chess and Go, in which self-taught
algorithms consistently outperform human experts.

■ METHODS

Target Molecules. Training/testing sets of 95 774/23 945
molecules were selected from the Reaxys database on the basis
of their structural diversity. Starting from more than 20 million
molecules in the database, we excluded (i) those listed in the
database of buyable compounds, (ii) those with SMILES
strings shorter than 20 or longer than 100, and (iii) those with
multiple fragments (i.e., molecules with “.” in the SMILES
string). The resulting ∼16 million molecules were then
aggregated using the Taylor−Butina (TB) algorithm37 to
form ∼1 million clusters, each composed of “similar”
molecules. Structural similarity between two molecules i and
j was determined by the Tanimoto coefficient

=
·

| | + | | − | · |
T

m m

m m m m
i j

i j i j
2 2

(6)

where mi is the ECFP4 fingerprint for molecule i.38 We used
fingerprints of length 1024 and radius 3. Two molecules within
a common cluster were required to have a Tanimoto
coefficient of T > 0.4. The target molecules were chosen as
the centroids of the ∼125 000 largest clusters, each containing
more than 20 molecules and together representing more than
∼12 million molecules. These target molecules were
partitioned at random to form the final sets for training and
testing.
Buyable Molecules. A molecule is defined to be a

substrate if it is listed in the commercially available Sigma-
Aldrich,25 eMolecules,26 or LabNetwork catalogs27 and does
not cost more than $100/g. The complete set of molecules in
these catalogs with price per gram ≤ $100 is denoted

= { }m m, ..., n1 with n ≈ 300 000.

Reaction Templates. Given a molecule m, we used a set of
∼60 000 reaction templates to generate sets of possible
precursors m′, which can be used to synthesize m in one
step. As detailed previously,39 these templates were extracted
automatically from literature precedents and encoded using the
SMARTS language. The application of the templates involves
two main steps, substructure matching and bond rewiring,
which were implemented using RDKit.40 Briefly, we first search
the molecule m for a structural pattern specified by the
template. For each match, the reaction template further
specifies the breaking and making of bonds among the
constituent atoms to produce the precursor molecule(s) m′.
We used the RDChiral package41 to handle the creation,
destruction, and preservation of chiral centers during the
reaction. The full code used for retrosynthetic template
extraction is available in ref 41.
The application of reaction templates to produce candidate

reactions represents a major computational bottleneck in the
retrosynthesis game due to the combinatorial complexity of
substructure matching. Additionally, even when a template
generates a successful match, it may fail to account for the
larger molecular context resulting in undesired byproducts
during the forward reaction. These two challenges can be
partially alleviated by use of a “template prioritizer”,18 which
takes as input a representation of the target molecule m and
generates a probability distribution over the set of templates
based on their likelihood of success. By focusing only on the
most probable templates, the prioritizer can serve to improve
both quality of the suggested reactions and the speed with
which they are generated. In practice, we trained a neural
network prioritizer on 5.4 million reaction examples from
Reaxys and selected the top 99.5% of templates for each
molecule m encountered. This filtering process drastically
reduced the total number templates applied from 60 000 to
less than 50 for most molecules. The training and validation
details as well as the model architecture are available on
Github.42

Policy Iteration. As noted in the main text, the depth
constraint imposed on synthesis trees generated during the
retrosynthesis requires some minor modifications to the value
function of eq 2. The expected cost of synthesizing a molecule
m now depends on the residual depth δ as

∑ ∑δ π δ δ= | + ′ −π π
∈ ′∈

v m r m c r v m(,) (,) () (, 1)
r m m r()

rxn
()

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ
(7)

where the first sum is over candidate reactions with m as
product, and the second is over the reactants (r) associated
with a reaction r. For the present cost model, the expected cost
vπ(m, δ) increases with decreasing δ due to the increased
likelihood of being penalized (to the extent P1) for reaching
the maximum depth (d = dmax such that δ = 0). Similarly, the ε-
greedy policy used in policy improvement must also account
for the residual depth at which a molecule is encountered

∑
π δ

ε δ

ε

| =
− = + ′ −π

∈ ′∈r m
r c r v m

(,)
1 if arg min () (, 1)

otherwise

r m m r()
rxn

()

l

m
ooooooo

n
ooooooo

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ

(8)

These recursive functions are fully specified by three
terminating conditions introduced in the main text: (1)

ACS Central Science Research Article

DOI: 10.1021/acscentsci.9b00055
ACS Cent. Sci. 2019, 5, 970−981

979

http://dx.doi.org/10.1021/acscentsci.9b00055

buyable molecule encountered, v(m, δ ≠ 0) = csub(m) for
∈m ; (2) maximum depth reached, v(m, 0) = P1; and (3)

unmakeable molecule encountered, v(m, δ ≠ 0) = P2 for
= ⌀m() .

Neural Network Architecture and Training. We
employed a multilayer neural network illustrated schematically
in Figure 7. The 17 million model parameters were learned

using gradient descent on training data generated by repeated
plays of the retrosynthesis game. Training was performed using
Keras with the Theano backend and the Adam optimizer with
an initial learning rate of 0.001, which decayed with the
number of model updates k as + k0.001/(1 2) (13 updates
were used to compute π∗). During each update, batches of 128
molecules and their computed average costs at a fixed ε were
selected from the most recent data and added to a replay
buffer. Batches of equivalent size were randomly selected from
the buffer and passed through the model for up to 100 epochs
(1 epoch was taken as the total number of new data points
having passed through the network). The mean-average error
between the averaged (true) and predicted costs was used as
the loss function. The latest model weights were then used as
the policy for the next round of synthesis games. The full code
used to generate the learned policies is available in ref 43.

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acscents-
ci.9b00055.

Additional results and figures including a distribution of
expected costs, the probability of successfully synthesiz-
ing target molecules, normalized probability distribu-
tions, and a 2D histogram (PDF)

■ AUTHOR INFORMATION

Corresponding Authors
*E-mail: jsschreck@gmail.com.
*E-mail: kyle.bishop@columbia.edu.

ORCID
John S. Schreck: 0000-0003-1565-7905
Connor W. Coley: 0000-0002-8271-8723
Kyle J. M. Bishop: 0000-0002-7467-3668
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work was supported by the DARPA Make-It program
under Contract ARO W911NF-16-2-0023. We acknowledge
computing resources from Columbia University’s Shared
Research Computing Facility project, which is supported by
NIH Research Facility Improvement Grant 1G20RR030893-
01, and associated funds from the New York State Empire
State Development, Division of Science Technology and
Innovation (NYSTAR) Contract C090171, both awarded April
15, 2010.

■ REFERENCES
(1) Warr, W. A. A short review of chemical reaction database
systems, computer-aided synthesis design, reaction prediction and
synthetic feasibility. Mol. Inf. 2014, 33, 469−476.
(2) Engkvist, O.; Norrby, P.-O.; Selmi, N.; Lam, Y.-h.; Peng, Z.;
Sherer, E. C.; Amberg, W.; Erhard, T.; Smyth, L. A. Computational
prediction of chemical reactions: current status and outlook. Drug
Discovery Today 2018, 23, 1203−1218.
(3) Coley, C. W.; Green, W. H.; Jensen, K. F. Machine learning in
computer-aided synthesis planning. Acc. Chem. Res. 2018, 51, 1281−
1289.
(4) Silver, D.; et al. Mastering the game of Go without human
knowledge. Nature 2017, 550, 354−359.
(5) Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai, M.;
Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel, T.; Lillicrap,
T.; Simonyan, K.; Hassabis, D. A general reinforcement learning
algorithm that masters chess, shogi, and Go through self-play. Science
2018, 362, 1140−1144.
(6) Kowalik, M.; Gothard, C. M.; Drews, A. M.; Gothard, N. A.;
Weckiewicz, A.; Fuller, P. E.; Grzybowski, B. A.; Bishop, K. J. Parallel
optimization of synthetic pathways within the network of organic
chemistry. Angew. Chem., Int. Ed. 2012, 51, 7928−7932.
(7) Szymkuc,́ S.; Gajewska, E. P.; Klucznik, T.; Molga, K.; Dittwald,
P.; Startek, M.; Bajczyk, M.; Grzybowski, B. A. Computer-assisted
synthetic planning: the end of the beginning. Angew. Chem., Int. Ed.
2016, 55, 5904−5937.
(8) Law, J.; Zsoldos, Z.; Simon, A.; Reid, D.; Liu, Y.; Khew, S. Y.;
Johnson, A. P.; Major, S.; Wade, R. A.; Ando, H. Y. Route designer: a
retrosynthetic analysis tool utilizing automated retrosynthetic rule
generation. J. Chem. Inf. Model. 2009, 49, 593−602.
(9) Christ, C. D.; Zentgraf, M.; Kriegl, J. M. Mining electronic
laboratory notebooks: analysis, retrosynthesis, and reaction based
enumeration. J. Chem. Inf. Model. 2012, 52, 1745−1756.
(10) Bøgevig, A.; Federsel, H.-J.; Huerta, F.; Hutchings, M. G.;
Kraut, H.; Langer, T.; Löw, P.; Oppawsky, C.; Rein, T.; Saller, H.
Route design in the 21st century: The IC SYNTH software tool as an
idea generator for synthesis prediction. Org. Process Res. Dev. 2015, 19,
357−368.
(11) Grzybowski, B. A.; Bishop, K. J.; Kowalczyk, B.; Wilmer, C. E.
The ‘wired’ universe of organic chemistry. Nat. Chem. 2009, 1, 31−36.
(12) Bertz, S. H. The first general index of molecular complexity. J.
Am. Chem. Soc. 1981, 103, 3599−3601.

Figure 7. The neural model for the cost of molecules is a feed-forward
neural network that accepts as input (green) an ECFP fingerprint of
size 16 384 extended to include the residual depth δ of the molecule.
The architecture includes one input layer (blue) consisting of 1024
nodes, five hidden layers (red) each containing 300 nodes, and one
output layer (purple) of size one plus a filter (also purple) that scales
the initial output number to be within the range [0, 500]. We also
used batch normalization after each layer. The final output represents
the estimated cost.

ACS Central Science Research Article

DOI: 10.1021/acscentsci.9b00055
ACS Cent. Sci. 2019, 5, 970−981

980

http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acscentsci.9b00055
http://pubs.acs.org/doi/abs/10.1021/acscentsci.9b00055
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.9b00055/suppl_file/oc9b00055_si_001.pdf
mailto:jsschreck@gmail.com
mailto:kyle.bishop@columbia.edu
http://orcid.org/0000-0003-1565-7905
http://orcid.org/0000-0002-8271-8723
http://orcid.org/0000-0002-7467-3668
http://dx.doi.org/10.1021/acscentsci.9b00055

(13) Sheridan, R. P.; Zorn, N.; Sherer, E. C.; Campeau, L.-C.;
Chang, C.; Cumming, J.; Maddess, M. L.; Nantermet, P. G.; Sinz, C.
J.; O’Shea, P. D. Modeling a crowdsourced definition of molecular
complexity. J. Chem. Inf. Model. 2014, 54, 1604−1616.
(14) Coley, C. W.; Rogers, L.; Green, W. H.; Jensen, K. F. SCScore:
Synthetic complexity learned from a reaction corpus. J. Chem. Inf.
Model. 2018, 58, 252−261.
(15) Weininger, D. SMILES, a chemical language and information
system. 1. Introduction to methodology and encoding rules. J. Chem.
Inf. Model. 1988, 28, 31−36.
(16) Ertl, P.; Schuffenhauer, A. Estimation of synthetic accessibility
score of drug-like molecules based on molecular complexity and
fragment contributions. J. Cheminf. 2009, 1, 8.
(17) Coley, C. W.; Rogers, L.; Green, W. H.; Jensen, K. F.
Computer-assisted retrosynthesis based on molecular similarity. ACS
Cent. Sci. 2017, 3, 1237−1245.
(18) Segler, M. H.; Waller, M. P. Neural-Symbolic machine learning
for retrosynthesis and reaction prediction. Chem. - Eur. J. 2017, 23,
5966−5971.
(19) Segler, M. H.; Preuss, M.; Waller, M. P. Planning chemical
syntheses with deep neural networks and symbolic AI. Nature 2018,
555, 604−610.
(20) Corey, E. J. The logic of chemical synthesis; John Wiley & Sons,
1991.
(21) Sutton, R.; Barto, A. Reinforcement learning: an introduction, 2nd
ed.; MIT Press, 2017.
(22) Mnih, V.; et al. Human-level control through deep reinforce-
ment learning. Nature 2015, 518, 529−533.
(23) Coley, C. W.; Jin, W.; Rogers, L.; Jamison, T. F.; Jaakkola, T. S.;
Green, W. H.; Barzilay, R.; Jensen, K. F. A graph-convolutional neural
network model for the prediction of chemical reactivity. Chem. Sci.
2019, 10, 370−377.
(24) Schwaller, P.; Laino, T.; Gaudin, T.; Bolgar, P.; Bekas, C.; Lee,
A. A. Molecular Transformer for chemical reaction prediction and
uncertainty estimation. 2018, arXiv:1811.02633. arXiv.org e-Print
archive. https://arxiv.org/abs/1811.02633.
(25) Sigma-Aldrich, Inc. https://www.sigmaaldrich.com (accessed
Dec 17, 2018).
(26) E-molecules. https://www.emolecules.com/info/plus/
download-database (accessed Dec 17, 2018).
(27) LabNetwork Collections. https://www.labnetwork.com/
frontend-app/p/#!/screening-sets (accessed Dec 17, 2018).
(28) Rogers, D.; Hahn, M. Extended-connectivity fingerprints. J.
Chem. Inf. Model. 2010, 50, 742−754.
(29) Shi, F.; Xing, G.-J.; Tao, Z.-L.; Luo, S.-W.; Tu, S.-J.; Gong, L.-Z.
An asymmetric organocatalytic povarov reaction with 2-hydroxystyr-
enes. J. Org. Chem. 2012, 77, 6970−6979.
(30) Klucznik, T.; et al. Efficient syntheses of diverse, medicinally
relevant targets planned by computer and executed in the laboratory.
Chem. 2018, 4, 522−532.
(31) Liu, B.; Ramsundar, B.; Kawthekar, P.; Shi, J.; Gomes, J.; Luu
Nguyen, Q.; Ho, S.; Sloane, J.; Wender, P.; Pande, V. Retrosynthetic
reaction prediction using neural sequence-to-sequence models. ACS
Cent. Sci. 2017, 3, 1103−1113.
(32) Marcou, G.; Aires de Sousa, J.; Latino, D. A.; de Luca, A.;
Horvath, D.; Rietsch, V.; Varnek, A. Expert system for predicting
reaction conditions: the Michael reaction case. J. Chem. Inf. Model.
2015, 55, 239−250.
(33) Lin, A. I.; Madzhidov, T. I.; Klimchuk, O.; Nugmanov, R. I.;
Antipin, I. S.; Varnek, A. Automatized assessment of protective group
reactivity: a step toward big reaction data analysis. J. Chem. Inf. Model.
2016, 56, 2140−2148.
(34) Segler, M. H.; Waller, M. P. Modelling chemical reasoning to
predict and invent reactions. Chem. - Eur. J. 2017, 23, 6118−6128.
(35) Gao, H.; Struble, T. J.; Coley, C. W.; Wang, Y.; Green, W. H.;
Jensen, K. F. Using machine learning to predict suitable conditions for
organic reactions. ACS Cent. Sci. 2018, 4, 1465−1476.
(36) Silver, D.; et al. Mastering the game of Go with deep neural
networks and tree search. Nature 2016, 529, 484−489.

(37) Butina, D. Unsupervised data base clustering based on
daylight’s fingerprint and Tanimoto similarity: a fast and automated
way to cluster small and large data sets. J. Chem. Inf. Comput. Sci.
1999, 39, 747−750.
(38) Glen, R. C.; Bender, A.; Arnby, C. H.; Carlsson, L.; Boyer, S.;
Smith, J. Circular fingerprints: flexible molecular descriptors with
applications from physical chemistry to ADME. IDrugs 2006, 9 (3),
199−204.
(39) Coley, C. W.; Barzilay, R.; Jaakkola, T. S.; Green, W. H.;
Jensen, K. F. Prediction of organic reaction outcomes using machine
learning. ACS Cent. Sci. 2017, 3, 434−443.
(40) RDKit: Open-source cheminformatics. http://www.rdkit.org
(accessed Dec 17, 2018).
(41) Coley, C. W. RDChiral. https://github.com/connorcoley/
rdchiral (accessed July 18, 2018).
(42) Coley, C. W. Retrotemp. https://github.com/connorcoley/
retrotemp/tree/master/retrotemp (accessed Dec 17, 2018).
(43) Schreck, J. S. retroRL. https://github.com/jsschreck/retroRL.

ACS Central Science Research Article

DOI: 10.1021/acscentsci.9b00055
ACS Cent. Sci. 2019, 5, 970−981

981

https://arxiv.org/abs/1811.02633
https://www.sigmaaldrich.com
https://www.emolecules.com/info/plus/download-database
https://www.emolecules.com/info/plus/download-database
https://www.labnetwork.com/frontend-app/p/#!/screening-sets
https://www.labnetwork.com/frontend-app/p/#!/screening-sets
http://www.rdkit.org
https://github.com/connorcoley/rdchiral
https://github.com/connorcoley/rdchiral
https://github.com/connorcoley/retrotemp/tree/master/retrotemp
https://github.com/connorcoley/retrotemp/tree/master/retrotemp
https://github.com/jsschreck/retroRL
http://dx.doi.org/10.1021/acscentsci.9b00055

